FREE SHIPPING ON ORDERS OVER $100! | SAVE BIG $$ WITH THE NEW BLASTER PPE BUNDLE! x

Home / Wind

Wind Towers

Put 60 years of experience and industry leadership to your advantage. The BlastOne heritage goes back to the early 1960s…but we’re not stuck in the past. With the ability to supply leading edge corrosion control industry solutions, think robotic blasting and plural component spraying, BlastOne is able to put you in the vanguard of blasting and coating efficiency and safety.

Industrial Wind Tower Blast & Paint Facilities

Many wind energy fabrication facilities are under pressure to reduce costs and improve efficiency. With our blend of experience and advanced technologies, customized to your specific operating requirements, we can rapidly ramp up your productivity and drive down your costs. Through supplying better equipment, better processes and better staff training, BlastOne can partner with you to revolutionize your corrosion control facilities. Our partnership with you will set in motion better outcomes, now and in the future.

Industry Challenges

Wind towers are erected with an estimated 25-30 year life. Often they are located in a harsh environment. High rainfall, coastal or marine exposure, or temperature extremes can all cause coating failure. The double whammy of coastal or marine of salt and water can accelerate the process of corrosion.

Consequently, an impenetrable and durable protective barrier is needed to protect wind towers from corrosion. These assets are high value and if they become critically corroded will result in a loss of both energy production and company profit. 

Abrasive blasting will ensure the surface is ready for optimum coating application, which lengthens the lifespan of the coating.

A few common issues we’ve found from working with the Wind Tower industry:

  • Inclement weather conditions

    The coatings on wind towers are expected to last the entire life of the tower, which is 25-30 years. This is a huge ask for a protective coating in high rainfall areas, coastal or marine environment or extreme temperature. All of these factors can lead to corrosion, which can impede power generation and shorten working life.

    By ensuring the surface is properly prepared, your asset works better, for longer.

  • High maintenance costs

    Wind towers are usually located in remote areas. Due to their height, they are difficult to access.

    If a tower becomes heavily corroded, due to poor surface preparation or coating failure, power generation ceases and maintenance or refurbishment will be required for the damaged tower. This cuts power output and incurs tens or hundreds of thousand dollars of costs.

  • Production bottlenecks from growing demand and labor shortages

    With the boom in green energy, there has never been higher demands for wind towers. However, many manufacturers have been suffering from labor shortages and unable to improve their production rates. Rapidly, the blasting and painting process creates production bottlenecks.
  • Operator safety concerns

    Blasting tower sections is a lengthy process. Manual operators can easily experience fatigue and lose the motivation to stay productive. A regular inspection program will ensure quality failures will be observed.

    Due to their large size the opportunity for injury is heightened during handling. Safety policies need to be implemented that remove workers from harms way.

The Best Blasting Equipment

ABRASIVES

Wind towers are usually blasted in a chamber in three sections per tower. Commonly used abrasives include GMA Garnet and metallic grit. Both the interior and the exterior of the tower require blasting. The exterior of a wind tower has a requirement for greater corrosion than the interior and is often given a coat of hot metal spray prior to top-coating. Steel grit is used if a hot metal spray coating will be applied to the tower’s exterior because of grit’s ability to provide an angular profile. If the exterior of the tower is not coated with a hot metal spray prior to top coating, then GMA Garnet will be used on both the inside and outside of the towers.

ROBOTIC BLASTING EQUIPMENT

Due to the repetitive nature of the work, robotics have been proven to reduce production costs and guarantee an excellent, consistent production. Because robots are not subject to fatigue, high flow blasting equipment is requires to take advantage of their productivity gains. This means large port valving, large bore blast hoses, high volume compressors and bulk blast pots.

Marine

Booth
Structure

Blast Booths / Rooms

Robotic
Automation

schmidt-bulk-wet-dry-blasting_amphiblast-large-bulk-pot-imgholdg

Blasting
Equipment

Garnet Blasting Creates Productivity Boost for Twin Barge Project

Abrasives

Coating Types and Equipment

With metal spraying, a molten zinc metal spray is applied using a process similar to MIG welding. Next, an epoxy intermediate top coat, or urethane coating is applied. This type of system is required to ensure long coating life in a harsh environment.

A second option is a three coat system of a zinc rich primer, an epoxy intermediate coat and then a urethane top coat. The urethane top coat maintains good gloss levels and is, to a certain degree, self-cleaning. Epoxy coatings do not have good UV resistance, chalking easily. Hence the requirement for a urethane top coat.

When coated without a metal spray base coat, typical dry film thickness (DFT) is a total of 350-500 microns which is 14-20 mils. With a metal spray base coat, because of its rough finish, the combined intermediate and top coats will normally have a dry film thickness of 16 mils.

PAINTING EQUIPMENT

When applying hot metal spray, dedicated equipment is used. This equipment is similar to that used in a mig or oxy welding system. A wire or powder is molten with a flame or electric arc. The following intermediate and top-coats will be applied with an airless sprayer. When hot metal spray is not used, the entire coating system will be applied with an airless sprayer. Airless spraying enables the highest application rates. It also has a high transfer efficiency; this means more coating stays on the surface being coated rather than blowing away in the wind. The downside is that the finish is inferior to an air spray system. Air-assisted airless spraying blends both systems for a better quality finish for airless spraying, albeit not at the production rate at the levels of non-air-assisted airless spraying. Air-assisted airless spray systems feed a small amount of air up to the front of the gun to break up the paint spray particle sizes for a better finish.

Case Studies

Training & Support

25 Important Considerations when Building a Blast Facility

If you are purchasing a turnkey blast room for building it yourself, there are 25 subjects you need to be well versed in. BlastOne has compiled a detailed report containing an in-depth guide on all the critical components of a blast room: design considerations, abrasive education, and production techniques.

Blastman Robotics LTD: The Reliable Blast Cleaning Solution

Typical industrial sandblasting automated & robotic blasting equipment require fixed, purpose-built infrastructure to operate. BlastOne specializes in designing, building, and commissioning robotic sandblasting facilities to provide custom solutions for our customer’s corrosion control needs.

Knowledge & Learning

Videos from the Experts

How to | Primed Insights | Safety Tips

Wheel Machine or Blasting Robot?

Watch Video

Robotic Internal Pipe Tool

Watch Video

Reducing Overspray

Watch Video

Contact BlastOne

We love to talk to customers and help them make the best decisions when purchasing equipment.
You can reach us via our Live Chat, Email, Phone, and Online Form.

Add to quote:

Registration is required to create a Quote.

Click Here to Login or Register.

Add to existing quote:

Add to Quote

Add to a new quote:

Send the request

BlastOne says
Thank you for submitting your quote. A sales representative will follow up with you asap.
Share Quote via Email

Share